欢迎您访问中出网!中出网是出入口设备行业门户网站。了解出入口行业,就上中出网
【厂家:注册|登陆】 【维修点:注册|登陆】 【服务热线:400-668-4811
首页>新闻资讯>

济南车牌识别厂家为您揭秘提升车牌识别准确率的方法

日期:2020-06-26

现在谈到车牌识别,绕不开的一个词就是“深度学习算法”。在产品宣传上,各大济南车牌识别厂家打出的自己的车牌识别产品是“真正的深度学习”、“超级人工智能”,“100%识别率”着实吸引了大量关注。

那么,它到底对车牌识别准确率有多大的提升呢?你真的了解深度学习吗?济南车牌识别厂家的产品是否也加持了这项“神功”呢?本文就带大家掀开“深度学习”的神秘面纱。

我们都知道,不同的光照环境下,对车牌识别效果影响巨大。如车牌在明朗的晴天和雨雪天,在人类的生理视觉上都是不一样的,而从摄像机拍摄到的图片来说,晴天的图片一般都较为清晰,但是强烈的阳光直射会造成车牌反光的问题,就像注视一面反光的镜子,难以辨清细节;阴雨天则会导致图片昏暗模糊;下雪则有可能覆盖车牌某些关键区域(如首汉字、数字或字母)。

车牌本身种类较多,颜色、外形、尺寸大小都不尽相同,拍摄角度、拍摄距离都会影响到车牌在图片中呈现的角度(姿态和外观)。另外,即使在同一天,阳光光照角度和光线强度的变化也会影响成像质量。

目前,市面上济南车牌识别厂家的车牌识别产品识别准确率可以达到99.5%以上,长久以来,这个瓶颈难以打破,一直到卷积神经网络(CNN)出现在我们面前。

当今时代,卷积神经网络在深度学习领域中可谓是大红大紫,尤其在计算机视觉领域更是一枝独秀。它在目标检测、跟踪、行为识别、图像分类、分割等图像领域的应用非常广泛。

车牌识别识别算法

相比传统的识别算法,以卷积神经网络为框架的深度学习技术有何优势呢?

传统的机器学习算法一般会人为设计具有一定通用性的“特征提取方法”,这些特征能够适合某一类的任务,具有一定的通用性,但由于都是人工设计的特征,因此对于某些共性问题很难得到根本性的解决。如复杂场景的车牌捕获不到;车牌切分的鲁棒性(算法对数据变化的容忍度)不够等。所以,特征方法的好坏是问题的关键。(划重点)

神经网络的出现,使得人为设计特征这一部分工作可以通过神经网络让机器自动学习,不需要人类干预。我们利用深层的神经网络来提取深层、抽象的高层特征,就可以使算法取得更好的性能表现。

人类之所以可以不断进化,从“以花为裙,以叶为裳”的原始人进化到衣冠楚楚的现代人,是因为人类可以通过自我学习,不断提升认知力与理解力。通过基于卷积神经网络(CNN)的深度学习算法,使机器能够像人类一样不断进化,通过大量的车牌样本的训练和经验的累计沉淀,变得越来越聪明,即使在看不太清楚车牌的情况下,也能准确识别出车牌。

相比传统的机器学习算法,基于卷积神经网络(CNN)的车牌检测与识别技术在复杂场景下的识别优势非常明显,对低光照、模糊、大角度等车牌的检测效果更好,可以大幅降低误识别情况的发生,在车牌矫正、车牌类型识别等方面突破了传统算法的技术瓶颈。


【重要提示】企业内容及图片均来自用户免费注册上传发布,如有侵权,请联系删除。邮箱:454945935@qq.com